The 406th Geodynamics Seminar

Post-perovskite phase boundary of Fe- and Al-bearing MgSiO₃

Dr. Xianglong Wang (JSPS Postdoctoral Fellow, GRC)

Date: 01.23.2015 (Fri) 16:30 ~


Venu: Meeting Room #486, Science

Research Bldg 1, Ehime Univ.

日時: 2015年1月23日(金)16:30~

場所:愛媛大学 総合研究棟 I

4階共通会議室

Abstract

The post-perovskite (PPv) phase transition of MgSiO₃ bridgmanite (Br) occurs in the pressure (P) and temperature (T) conditions corresponding to the Earth's D" layer. Therefore, MgSiO3 PPv is believed to be a key mineral to understanding the seismological properties in this layer. However, to date, it is still a challenging subject to determine the phase transition boundary preciously in the geophysically relevant Fe and Al-bearing compositions. Based on the first-principles methods combined with the internally consistent LSDA+U method and the lattice dynamics approach, the high-P and high-T thermodynamics of MgSiO₃ are directly calculated with incorporation of 6.25 mol% of Fe²⁺, Fe³⁺Fe³⁺, Fe³⁺Al³⁺, and Al³⁺Al³⁺. Using calculated free energies, we determine the PPv phase boundaries for Fe and Al-bearing compositions. Our results show that at 2000 K, the Fe³⁺Al³⁺ and Fe³⁺Fe³⁺ incorporations span coexisting domains between Br and PPv significantly with lowering the transition pressure, in contrast to the Fe²⁺- and Al³⁺Al³⁺-bearing cases.

> 詳細は当センターホームページ: http://www.ehime-u.ac.jp/~grc/をご覧ください 問い合わせ先: 出倉 春彦 (TEL:089-927-8408, e-mail:dekura@sci.ehime-u.ac.jp)